
 bankmark UG (haftungsbeschränkt)
 Bahnhofstraße 10 | 94032 Passau | Germany
 www.bankmark.de | info@bankmark.de
 T +49 851 205 490 490 | F +49 851 205 490 499

NoSQL Performance Test
In-Memory Performance Comparison of SequoiaDB, Cassandra,

and MongoDB

White Paper

by bankmark UG (haftungsbeschränkt)

December 2014

2

CONTENTS

1 Introduction ... 3

2 Results Summary .. 3

3 Hardware and Software Configuration ... 4

3.1 Cluster Hardware ... 4

3.2 Cluster Software .. 4

4 Setup Procedure ... 5

4.1 Cluster Kernel Parameters ... 5

4.2 Apache Cassandra .. 5

4.3 MongoDB.. 5

4.4 SequoiaDB .. 5

4.5 YCSB... 6

5 Benchmark Setup.. 6

5.1 Guidelines / Procedures .. 7

5.2 Configuration Matrix... 7

6 Benchmark Results .. 8

6.1 Test Case I (200 Million Records / 20 Million Records per Node).. 8

6.2 Test Case II (100 Million Records / 10 Million Records per Node) ..10

7 About the Authors ...12

3

1 INTRODUCTION

In view of the fast development of innovative IT-technologies, NoSQL technology is increasingly utilized in

big data and real-time web application in recent years. Because NoSQL stores allow for a more agile

development process and execution, they can replace traditional relational database management

systems (RDBMS) in a large number of industrial application fields. NoSQL technology significantly improves

both database scalability and usability by softening RDBMS features, such as consistency and relational

model.

In this report, bankmark reports on a large series of benchmark experiments to compare publicly available

NoSQL store products with SequoiaDB in in different workload scenarios. For this purpose, the bankmark

team used the Yahoo Cloud Serving Benchmark (YCSB) suite as testing platform. The bankmark team used

preset settings for all systems wherever possible and only adapted settings that caused major performance

bottlenecks. For all databases official documentation as well as information from other publicly available

sources was utilized. All major adaptations are documented in this report, a full report is available on

request that contains all configuration settings.

In the present report, bankmark focused on the performance of each database for different use cases and

ensured a maximum of comparability between different results. One aim of the experiments was to get

out-of-the-box performance. On the other hand, the distributed environment required some amount of

optimization to get the systems running in a clustered environment. All systems were configured for

clustered use and some optimization regarding partitioning / sharding took place to get competitive results

for all systems.

All tests were implemented by the bankmark team. All important details concerning the physical

environment and the testing settings are specified in this testing report, a full report ensuring repeatability

of all experiments is available on request.

2 RESULTS SUMMARY

In our experiments, three systems were compared, SequoiaDB1, Cassandra2, and MongoDB3. All systems

were tested on a 10 node cluster in an in-memory (raw data size ¼ of total RAM) or mostly-in-memory (raw

data size ½ of total RAM) setup. We used the widely accepted YCSB suite as benchmarking platform. In all

experiments, all data was replicated 3 times for fault tolerance. The workloads tested were all using skewed

workloads (with Zipfian or latest distribution). The detailed configuration can be seen below and in an

extended report that is available on request.

The results do not show a clear winner across all experiments. Our tests with the mostly-in-memory setup

show that Cassandra uses most memory and thus has to perform much more disk I/O in read heavy

workloads, leading to a highly decreased performance. In this case, SequoiaDB outperforms the other

systems in most cases, except for write heavy workloads, which are dominated by Cassandra. In a pure in

memory setup (raw data size is ¼ of total RAM), the performance of Cassandra and SequoiaDB with

SequoiaDB being faster for read requests and Cassandra being faster for write request. MongoDB is slowest

in almost all test cases.

1 http://www.sequoiadb.com/en/
2 http://cassandra.apache.org/
3 http://www.mongodb.org/

http://www.sequoiadb.com/en/
http://cassandra.apache.org/
http://www.mongodb.org/

4

3 HARDWARE AND SOFTWARE CONFIGURATION

In this section, the software and hardware used in all experiments will be described. The tests were

performed on a cluster located at SequoiaDB’s lab. All experiments were executed on physical hardware

without any virtualization layer. The base system as well as the basic MongoDB and SequoiaDB installation

were installed by trained professionals. bankmark had full root access to the cluster and reviewed all

settings. Cassandra was installed by bankmark.

3.1 CLUSTER HARDWARE
All experiments were performed on a 10 node cluster (five Dell PowerEdge R520 servers and five Dell

PowerEdge R720 servers) for the database system and five HP ProLiant BL465c blades as YCSB clients. The

hardware configuration is listed below:

3.1.1 5x Dell PowerEdge R520 (server)

 1x Intel Xeon E5-2420, 6 cores/12 threads, 1.9 GHz

 47 GB RAM

 6x 2 TB HDD, JBOD

3.1.2 5x Dell PowerEdge R720 (server)

 1x Intel Xeon E5-2620, 6 cores/12 threads, 2.0 GHz

 47 GB RAM

 6x 2 TB HDD, JBOD

3.1.3 5x HP ProLiant BL465c (clients)

 1x AMD Opteron 2378

 4 GB RAM

 300 GB logical HDD on a HP Smart Array E200i Controller, RAID 0

3.2 CLUSTER SOFTWARE
The cluster consists of Dell PowerEdge R520, Dell PowerEdge R720 and HP ProLiant BL465c blades as

physical systems, all of which are equipped with different software. All information concerning the software

in use and the corresponding software versions are listed below.

3.2.1 Dell PowerEdge R520 and R720 (used as server)

 OS: Red Hat Enterprise Linux Server 6.4

 Architecture: x86_64

 Kernel: 2.6.32

 Apache Cassandra: 2.1.2

 MongoDB: 2.6.5

 SequoiaDB: 1.8

 YCSB: 0.1.4 master (brianfrankcooper version at Github) with bankmark changes (see 4.5)

3.2.2 HP ProLiant BL465c (used as client)

 OS: SUSE Linux Enterprise Server 11

 Architecture: x86_64

 Kernel: 3.0.13

YCSB: 0.1.4 master (brianfrankcooper version at Github) with bankmark changes (see 4.5)

5

4 SETUP PROCEDURE

Three systems were benchmarked using YCSB, namely Apache Cassandra, MongoDB and SequoiaDB. In the

following sections, it is described how those systems were installed. The systems running at the cluster

were tested with a replication factor of three and usage of three separate disks. Compression was activated

if the system had support for it.

4.1 CLUSTER KERNEL PARAMETERS
The following parameters where changed for all systems:

 vm.swappiness = 0

 vm.dirty_ratio = 100

 vm.dirty_background_ratio = 40

 vm.dirty_expire_centisecs = 3000

 vm.vfs_cache_pressure = 200

 vm.min_free_kbytes = 3949963

 vm.max_map_count = 131072

4.2 APACHE CASSANDRA
Apache Cassandra was installed according to the official documentation4 on all servers. It was configured

with the recommended production settings5. Commit log and data were assigned to different disks (disk1

for the commit log and disk 5 and disk 6 for data).

4.3 MONGODB
MongoDB was installed by trained professionals. To use all three data disks and to perform replication on

the cluster, a complex schema was implemented on the systems that follows the official documentation for

cluster setups6. Config servers were started on three of the cluster nodes. On all ten servers, a mongos

instance (for sharding) was started. Each shard was added to the cluster. To use all three disks and to have

three replicas, ten replica sets were distributed according to the following table (columns are cluster

nodes):

 node1 node2 node3 node4 node5 node6 node7 node8 node9 node10
disk3 dg0 dg0 dg0 dg1 dg1 dg1 dg2 dg2 dg2 dg3

disk4 dg3 dg3 dg4 dg4 dg4 dg5 dg5 dg5 dg6 dg6
disk5 dg6 dg7 dg7 dg7 dg8 dg8 dg8 dg9 dg9 dg9

As MongoDB provides no mechanism to start the sharded cluster automatically, the manual startup

procedure was implemented into the YCSB kit specifically for the 10 node cluster.

4.4 SEQUOIADB
SequoiaDB was installed by trained professionals according to the official documentation7. The setup was

executed according to the documentation for cluster setups 8 . SequoiaDB is able to start all instances

through a cluster manager, the preinstalled init script “sdbcm” could be used to start all services. Three of

4 http://www.datastax.com/documentation/cassandra/2.1/cassandra/install/installRHEL_t.html
5 http://www.datastax.com/documentation/cassandra/2.1/cassandra/install/installRecommendSettings.html
6 http://docs.mongodb.org/manual/tutorial/deploy-shard-cluster/
7 http://www.sequoiadb.com/en/document/1.8/installation/server_installation/topics/linux_en.html
8 http://www.sequoiadb.com/en/document/1.8/installation/configuration_start/topics/cluster_en.html

http://www.datastax.com/documentation/cassandra/2.1/cassandra/install/installRHEL_t.html
http://www.datastax.com/documentation/cassandra/2.1/cassandra/install/installRecommendSettings.html
http://docs.mongodb.org/manual/tutorial/deploy-shard-cluster/
http://www.sequoiadb.com/en/document/1.8/installation/server_installation/topics/linux_en.html
http://www.sequoiadb.com/en/document/1.8/installation/configuration_start/topics/cluster_en.html

6

the system’s nodes were chosen as catalog nodes. Three instances of SequoiaDB were started on each

node, each accessing its own disk.

4.5 YCSB
YCSB has several shortcomings. It is not well suited to run multiple YCSB instances on different hosts, long

running high OPS workloads, on machines with many physical cores. Furthermore, it is not very actively

maintained. bankmark made several extensions and modifications to the 0.1.4 version in the main

repository. Below are the most important changes:

 Add scripting to automate tests

 Cassandra driver from jbellis (https://github.com/jbellis/YCSB)

 MongoDB driver from achille (https://github.com/achille/YCSB)

o Add batch insert function (provided by SequoiaDB)

o Updated driver interface implementation to MongoDB 2_12 and added property flag to

activate "unordered inserts" in batch mode.

 SequoiaDB driver from SequoiaDB

 Changes for multi-node setups and bulk load option

5 BENCHMARK SETUP

The following generic and specific parameters were chosen for the benchmark run:

 Ten servers (R520 and R720) hosted the database systems and five blades as clients

 Use the sixth blade as system running the control script

 Each database system wrote data to three independent disks

 All experiments were run with replication factor 3

bankmark’s YCSB kit provides workload files according to the tests defined in the statement of work:

workload1 warmup Single load Zipfian distribution 100% read
workload1 bulk load

(1k records)
Zipfian distribution 100% read

workload2 warmup Single load Zipfian distribution 50% read,
50% update

workload2 bulk load
(1k records)

Zipfian distribution 50% read,
50% insert

workload3 warmup Single load Zipfian distribution 5% read,
95% update

workload3 bulk load
(1k records)

Zipfian distribution 5% read,
95% update

workload4 warmup Single load Zipfian distribution 95% read,
5% update

workload4 bulk load
 (1k records)

Zipfian distribution 95% read,
5% update

workload5 warmup Single load latest distribution 95% read,
5% update

workload6 bulk load
(1k records)

latest distribution 95% read,
5% insert

https://github.com/jbellis/YCSB
https://github.com/achille/YCSB

7

For the data load, either the workload[1-5]-warmup or the workload[1-5] file can be used, depending on

the desired load type. Each of the five workloads has been divided into a workload file for the final result

and a warmup file, which is performed before the measured run. To avoid complications with YCSB’s

internal handling of accessing records, no inserts were performed during the warmup. Using a thread

scaling experiment, we determined that 64 threads per YCSB instance worked best across all systems.

These were the remaining parameters used in the test:

 We used compression where possible

 Thread count per YCSB clients: 64

 Generate

o 200 Million (20 Million per node) records for Test Case I and

o 100 Million (10 Million per node) records for Test Case II test

Each record consists of one key “user<ID>” and ten fields ”Field<ID>”. Default record size of YCSB

(100 byte) was used, which results in an average of 1128 Bytes per record (10 fields + field names

+ key)

 General benchmarking procedure for each key value store:

o Start database servers

o Iterate over the five workloads defined in the provided workloads files:

 Perform the data single load (no time limit, workload file workload[1-5]-warmup)

 Pause for 30 minutes to give each system time to perform any clean up etc.

 Run a 30 minutes warmup of the workload (workload file workload[1-5]-warmup)

 Run workload for 30 minutes (workload file workload[1-5])

o Stop database servers

5.1 GUIDELINES / PROCEDURES
All systems performed a single load, a warmup and a measured run. For systems which support a bulk load

operation, namely MongoDB and SequoiaDB, an additional bulk load test was performed after the test

completed.

5.2 CONFIGURATION MATRIX
Database
Options

Cassandra MongoDB SequoiaDB

Nodes 10 instances
(1 per node)

10 “mongos” instances
(1 per node)
30 “mongod” replica
instances (3 per node)
3 configuration Servers
(every 3rd node)

10 SequoiaDB instances
30 Replica instances (3 per
node)

Disks Log: disk 1
Data: disk5, disk6

Replicas: disk3, disk4, disk5 Replicas: disk3 disk4 disk5

Sharding
/Replication

3 replicas (on db
creation)

10 shards with 3 replicas
each

10 shards with 3 replicas each

Compression Yes No (not supported) Yes
Consistency Read/write/scan/

delete: ONE
Read preference: nearest
Write concern: Journaled

Write concern: Journaled (not
changeable)

Bulk No Yes (1k records per batch) Yes (1k records per batch)

8

6 BENCHMARK RESULTS

6.1 TEST CASE I (200 MILLION RECORDS / 20 MILLION RECORDS PER NODE)
In this experiment, the raw data size is about 45% of the system’s total RAM.

6.1.1 Load

6.1.2 Bulkload (Batches each 1000 records)

6.1.3 Workload 1, zipfian, 100% read

0

10000

20000

30000

40000

50000

60000

70000

80000

Throughput (ops/sec)

sequoiadb

cassandra

mongodb

0

10000

20000

30000

40000

50000

60000

70000

Throughput (ops/sec)

sequoiadb

mongodb

0

5000

10000

15000

20000

25000

30000

Throughput (ops/sec)

sequoiadb

cassandra

mongodb

9

6.1.4 Workload 2, zipfian, 50% read, 50% update

6.1.5 Workload 3, zipfian, 5% read, 95% update

6.1.6 Workload 4, zipfian, 95% read, 5% update

0

2000

4000

6000

8000

10000

12000

14000

Throughput (ops/sec)

sequoiadb

cassandra

mongodb

0

10000

20000

30000

40000

50000

60000

70000

80000

Throughput (ops/sec)

sequoiadb

cassandra

mongodb

0

2000

4000

6000

8000

10000

12000

14000

Throughput (ops/sec)

sequoiadb

cassandra

mongodb

10

6.1.7 Workload 5, latest distribution, 95% read, 5% insert

6.2 TEST CASE II (100 MILLION RECORDS / 10 MILLION RECORDS PER NODE)
In this experiment, the raw data size is about 22% of the system’s total RAM.

6.2.1 Load

6.2.2 Bulkload

0

5000

10000

15000

20000

25000

30000

35000

Throughput (ops/sec)

sequoiadb

cassandra

mongodb

0

20000

40000

60000

80000

100000

Throughput (ops/sec)

sequoiadb

cassandra

mongodb

0

10000

20000

30000

40000

50000

60000

70000

80000

Throughput (ops/sec)

sequoiadb

mongodb

11

6.2.3 Workload 1, zipfian, 100% read

6.2.4 Workload 2, zipfian, 50% read, 50% update

6.2.5 Workload 3, zipfian, 5% read, 95% update

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

Throughput (ops/sec)

sequoiadb

cassandra

mongodb

0

5000

10000

15000

20000

25000

30000

Throughput (ops/sec)

sequoiadb

cassandra

mongodb

0

20000

40000

60000

80000

100000

120000

Throughput (ops/sec)

sequoiadb

cassandra

mongodb

12

6.2.6 Workload 4, zipfian, 95% read, 5% update

6.2.7 Workload 5, latest distribution, 95% read, 5% insert

7 ABOUT THE AUTHORS

Tilmann Rabl is a Postdoctoral fellow at the University of Toronto and CEO of bankmark. His research

focusses on big data benchmarking and big data systems. Michael Frank is CTO of bankmark, he is the core

developer of the Parallel Data Generation Framework (PDGF), which is basis for industry standard

benchmarks. Manuel Danisch is COO of bankmark. He is one of the main developers of the BigBench big

data analytics benchmark and the data generator for the Transaction Processing Performance Council’s

(TPC) benchmark TPC-DI.

bankmark is an independent benchmark institution whose mission is to revolutionize big data

benchmarking. Driven by innovative technology, bankmark creates performance and quality tests as well

as proof of concept systems and completely simulated productive systems efficiently and cost-effectively.

Techniques based on cutting edge scientific research allow for unprecedented quality and speed.

bankmark is independent member of the industry benchmark standardization organizations SPEC and TPC

and its technology is basis for benchmarks such as TPC-DI and BigBench.

0

10000

20000

30000

40000

50000

60000

70000

Throughput (ops/sec)

sequoiadb

cassandra

mongodb

0

20000

40000

60000

80000

100000

120000

140000

Throughput (ops/sec)

sequoiadb

cassandra

mongodb

